MP3401 / MuRF1 (C-terminal region) Rabbit Polyclonal


产品资料详情: ECMbio链接




Muscle proteolysis is regulated by the ATP-dependent ubiquitin–proteasome system. This system involves ubiquitination of specific proteins, leading to recognition and degradation by the 26S proteasome complex. Ubiquitination requires interactions with ubiquitin related proteins, ubiquitin-activating (E1), ubiquitin-conjugating (E2) and ubiquitin-ligating enzymes (E3) known as ligases. Two muscle specific ubiquitin ligases have been identified, muscle ring finger 1 (MuRF-1) and Atrogin 1. Both ligases are regulated by the Akt1/FOXO1 signaling pathway, and both proteins have been shown to be upregulated prior to the onset of atrophy in multiple models of muscle wasting, including disuse and cachexia. MuRF1 is also known as TRIM63, SMRZ, and RNF28, and its expression is upregulated after TNFα treatment in C2C12 cells and muscle tissue, while localization of MuRF1 protein has been observed in the cytoplasm and nucleus of cells.


Zhang, Y. et al. (2017) Evid Based Comp Altern Med. 6268378. (IHC: mouse gastrocnemius)
Riaz, M. et al. (2016) PLoS Genet. May; 12(5): e1006031. (WB: mouse myotubes)
Abrigo, J. et al. (2016) Cell Signal. 28(5):366. (WB: mouse C2C12 cells)
Marino, F.E. et al. (2015) JCSM.12031 (WB: mouse gastrocnemius)
Wagatsuma, A. et al. (2016) Mol Cell Biochem. 412(1-2):59 (WB: rat gastrocnemius muscle)
Kang, C. et al. (2015) FASEB J. 29(10): 4092. (WB: mouse skeletal muscle)
Gwag, T. et al. (2015) J phys & pharm 66(2): 273. (WB: rat L6 myotube)
Jaitovich, A. et al. (2015) J Biol Chem. 290(14):9183 (WB: C2C12 myotubes)
Rahbek, SK et al. (2015) Amino Acids. 47(4):767. (WB: human muscle)
Mastro, L.M. et al. (2015) Domest Anim Endocrinol. 50:14. (WB: horse gluteus medius muscle)
Sakai, H. et al. (2014) Toxicol Appl Pharmacol. (2):190. (WB: mouse muscle)
Smith, IJ et al. (2014) FASEB J. 28(7):2790. (WB: rat diaphragm)
Stefanetti, R. et al (2014) Front in phys 5(30):doi 10.3389 (WB: human muscle)
Ostler, J. et al. (2014) Am J Phys Endo Metab. 306(6): E592. (WB: rat gastrocnemius and skeletal muscle)
Franchi, M.V. et al. (2014) Acta Physiol (Oxf). 210(3):642. (WB: human vastus lateralis muscle)
Langenberg, D. et al. (2013) J Chrons Colitis. [Epub] (WB: humah skeletal muscle)
Kang, J. et al. (2014) FEBS Lett. 588(1):79. (WB: mouse skeletal muscle)
Kang, C. et al. (2013) Jou. of App. Phys. 115(11): 1618. (WB: mouse tibialis anterior)
Pond, A.L. et al. (2014) Muscle Nerve. 49(3): 378 (WB: mouse gastrocnemius)
Peterle, E. et al. (2013) J Neurol. 260(8):2033. (WB: human skeletal muscle)
Dong, Y. et al. (2013) PLoS One 8(3): e58554 (WB: mouse muscle)
Fanin, M. et al. (2013) Neuropathol Appl Neurobiol Epup ahead of print (WB: human skeletal muscle )
Gunderman, D. et al. (2012) J Appl Physiol 43(24):1334. (WB: human skeletal muscle)
Orellana, R. et al (2012) AJP Reg Int Comp Phys. 302(6):682. (WB: Pig skeletal muscle LPS treated)
Vanderplanck, C. et al. (2011) PLoS One 6(10):e26820. (IFS: human myoblasts and TE671 rhabdomyosarcoma)
Sanchez, A. et al. (2012) J Cell Biochem 113(2):695. (WB: mouse primary myotubes)
Gilliam, L. et al. (2012) AJP Cell Physiol 302:195. (WB: C2C12 myotubes)
Finlin, B.S. et al. (2012) J Nutr Biochem. 23(8):885. (WB: human myotubes)
Anvar, S.Y. et al. (2011) Skeletal Muscle. 1:15. (ICC: C2C12 myotubes)
Hain, B.A. et al. (2011) AJP Reg Int Comp Phys. 300(3):R595. (WB: rat muscle)



100 ul
冷冻 (-20C)